Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 271: 116428, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38653068

RESUMO

Recent evidence suggests that histone deacetylases (HDACs) are important regulators of autosomal dominant polycystic kidney disease (ADPKD). In the present study, a series of benzothiazole-bearing compounds were designed and synthesized as potential HDAC inhibitors. Given the multiple participation of HDACs in ADPKD cyst progression, we embarked on a targeted screen using HeLa nuclear extracts to identify potent pan-HDAC inhibitors. Compound 26 emerged as the most efficacious candidate. Subsequent pharmacological characterization showed that compound 26 effectively inhibits several HDACs, notably HDAC1, HDAC2, and HDAC6 (IC50 < 150 nM), displaying a particularly high sensitivity towards HDAC6 (IC50 = 11 nM). The selected compound significantly prevented cyst formation and expansion in an in vitro cyst model and was efficacious in reducing cyst growth in both an embryonic kidney cyst model and an in vivo ADPKD mouse model. Our results provided compelling evidence that compound 26 represents a new HDAC inhibitor for the treatment of ADPKD.


Assuntos
Benzotiazóis , Inibidores de Histona Desacetilases , Rim Policístico Autossômico Dominante , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/síntese química , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/patologia , Humanos , Animais , Camundongos , Benzotiazóis/farmacologia , Benzotiazóis/química , Benzotiazóis/síntese química , Relação Estrutura-Atividade , Estrutura Molecular , Relação Dose-Resposta a Droga , Células HeLa , Histona Desacetilases/metabolismo
2.
Aging (Albany NY) ; 16(7): 5905-5915, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38517394

RESUMO

Dysfunction of tight junctions such as zonula occludens protein-1 (ZO-1)-associated aggravation of blood-brain barrier (BBB) permeability plays an important role in the progression of stroke. Cepharanthine (CEP) is an extract from the plant Stephania cepharantha. However, the effects of CEP on stroke and BBB dysfunction have not been previously reported. In this study, we report that CEP improved dysfunction in neurological behavior in a middle cerebral artery occlusion (MCAO) mouse model. Importantly, CEP suppressed blood-brain barrier (BBB) hyperpermeability by increasing the expression of ZO-1. Notably, we found that CEP inhibited the expression of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor 2 (VEGFR2) in the cortex of MCAO mice. Additionally, the results of in vitro experiments demonstrate that treatment with CEP ameliorated cytotoxicity of human bEnd.3 brain microvascular endothelial cells against hypoxia/reperfusion (H/R). Also, CEP attenuated H/R-induced aggravation of endothelial permeability in bEND.3 cells by restoring the expression of ZO-1. Further study proved that the protective effects of CEP are mediated by inhibition of VEGF-A and VEGFR2. Based on the results, we conclude that CEP might possess a therapeutic prospect in stroke through protecting the integrity of the BBB mediated by the VEGF/VEGFR2/ZO-1 axis.


Assuntos
Benzodioxóis , Benzilisoquinolinas , Barreira Hematoencefálica , Transdução de Sinais , Acidente Vascular Cerebral , Fator A de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Proteína da Zônula de Oclusão-1 , Animais , Proteína da Zônula de Oclusão-1/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Humanos , Masculino , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Linhagem Celular
3.
J Am Chem Soc ; 145(26): 14446-14455, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37329571

RESUMO

Quasi-classical molecular dynamics (MD) simulations were carried out to study the mechanism of iron porphyrin-catalyzed hydroxylation of ethylbenzene. The hydrogen atom abstraction from ethylbenzene by iron-oxo species is the rate-determining step, which generates the radical pair of iron-hydroxo species and the benzylic radical. In the subsequent radical rebound step, the iron-hydroxo species and benzylic radical recombine to form the hydroxylated product, which is barrierless on the doublet energy surface. In the gas-phase quasi-classical MD study on the doublet energy surface, 45% of the reactive trajectories lead directly to the hydroxylated product, and this increases to 56% in implicit solvent model simulations. The percentage of reactive trajectories leading to the separated radical pair is 98-100% on high-spin (quartet/sextet) energy surfaces. The low-spin state reactivity dominates in the hydroxylation of ethylbenzene, which is dynamically both concerted and stepwise, since the time gap between C-H bond cleavage and C-O bond formation ranges from 41 to 619 fs. By contrast, the high-spin state catalysis is an energetically stepwise process, which has a negligible contribution to the formation of hydroxylation products.

4.
Cancer Cell Int ; 23(1): 82, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37118800

RESUMO

Hepatocellular carcinoma (HCC) is a malignancy worldwide with one of the worst prognoses. Emerging studies have revealed that long noncoding RNAs (lncRNAs) contribute to HCC progression. This research probes the expression and regulatory effect of lncRNA SATB2-AS1 on HCC development. Reverse transcription-polymerase chain reaction (RT-PCR) was applied to measure the SATB2-AS1 profile in HCC tissues and adjacent non-tumor tissues. The impact of SATB2-AS1, miR-3678-3p, or GRIM-19 on HCC cell proliferation, growth, migration, invasion, and apoptosis was determined by gain- and loss-of-function experiments. The results revealed that SATB2-AS1 was downregulated in HCC tissues, and its lower levels were related to higher tumor staging and poorer prognosis of HCC patients. SATB2-AS1 overexpression repressed HCC cell proliferation, induced G1 arrest, and apoptosis, and inhibited migration, invasion, and epithelial-mesenchymal transition (EMT). Mechanistically, SATB2-AS1 inactivated STAT3/HIF-1α and strengthened GRIM-19 expression. After knocking down GRIM-19 with small interfering RNA (siRNA), the malignant phenotypes of HCC cells were enhanced. Further bioinformatics analysis showed that miR-3678-3p was targeted by SATB2-AS1. The dual-luciferase reporter assay, RNA immunoprecipitation (RIP) experiment, and Fluorescence in situ Hybridization (FISH) test confirmed that SATB2-AS1 sponged miR-3678-3p and the latter targeted GRIM-19. The rescue experiments showed that miR-3678-3p aggravated the malignant behaviors of HCC cells, whereas SATB2-AS1 overexpression reversed miR-3678-3p-mediated effects. Inhibition STAT3 promoted SATB2-AS1 and GRIM-19 expression, and reduced miR-3678-3p level. Activation STAT3 exerted opposite effects. Overall, this study confirmed that SATB2-AS1 is a potential prognostic biomarker for HCC and regulates HCC devolvement by regulating the miR-3678-3p/GRIM-19/STAT3/HIF-1α pathway.

5.
J Ethnopharmacol ; 302(Pt A): 115914, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36347303

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: As one of the important traditional Chinese medicines, Alpinia oxyphylla could warm and tonify the kidney and spleen. It has been used as anti-salivation, anti-diarrhea in various diseases. In recent years, many studies have reported the significant effect of Alpinia oxyphylla on improving cognitive ability, anti oxidative stress and protecting neurons. AIMS OF THE STUDY: In this paper, we studied whether AE and its main active components could improve M1 and M2 polarization, inhibit neuroinflammation through triggering receptor expressed on myeloid cells 2 (TREM2), and exert anti-inflammatory effects. MATERIALS AND METHODS: In this paper, the concentrations of inflammatory cytokines such as NO, TNF-α, IL-10 were assessed using detection kits respectively. Arg-1 and Iba-1, as polarized markers of M1 and M2, were detected by Immunofluorescence staining. CD86 and CD206 were tested by flow cytometry as surface markers of M1 and M2. Furthermore, RT-PCR was performed to determinate TNF-α, IL-10, Arg-1, and Iba-1. Western blot was used to test the activation of PI3K/AKT/GSK3ß and BDNF/TrkB/TLR4 signaling pathways. TREM2 siRNA treatment further verified the action target of Chrysin, the main active ingredient of Alpinia oxyphylla. Molecular docking study was performed to investigate the binding mode between Chrysin and the human TREM2. RESULTS: We found that AE could promote the phenotypic transformation of microglia from M1 to M2, and similar effects of Chrysin were observed. Furthermore, downregulation of TREM2 blocked the anti-neuroinflammation of Chrysin, and inhibited the shift of M1 phenotype to M2 phenotype. Additionally, TREM2-siRNA suppressed the effects of Chrysin on PI3K/AKT/GSK3ß and BDNF/TrkB/TLR4 signaling pathways. CONCLUSIONS: Our findings indicated that AE could improve the polarization response of microglia. TREM2 plays a vital role in the microglial repolarization effects of Chrysin through PI3K/AKT/GSK3ß and BDNF/TrkB/TLR4 signaling pathways regulated by neuroinflammation.


Assuntos
Lipopolissacarídeos , Microglia , Humanos , Lipopolissacarídeos/farmacologia , Interleucina-10/metabolismo , Receptor 4 Toll-Like/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , RNA Interferente Pequeno/farmacologia , Simulação de Acoplamento Molecular , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
6.
Metab Brain Dis ; 37(7): 2261-2275, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35666395

RESUMO

The present study aimed to evaluate the antidepressant-like effect of essential oils from Schisandra chinensis (Turcz.) Baill. (SEO) and its possible mechanisms of SEO. The behavioral despair mouse model in vivo and H2O2-induced PC12 cells model in vitro were employed. And the potential effective components were identified by the spectrum-effect relationships analysis. SEO significantly decreased the immobility time in the forced swimming test and tail suspension test, which indicated a promising antidepressant-like effect of SEO in depressed mice. The decreased levels of SOD, GSH, and CAT, and increased levels of MDA were significantly reversed by SEO treatment, which showed good antioxidant activities both in vitro and in vivo. Besides, SEO significantly promoted the nuclear translocation of Nrf2 and the expression of HO-1 in depressed mice and H2O2-induced PC12 cells. The histopathological examination results showed a potential neuronal protective effect of SEO in the hippocampus and cortex. Furthermore, the upregulation of PI3K/AKT/GSK3ß signaling was observed after SEO treatment in the H2O2-induced PC12 cells. Additionally, based on the spectrum-effect relationship analysis, 9 peaks were identified as positively correlated with the antioxidant activity of SEO. These results suggested that SEO promoted Nrf2/HO-1 pathway to improve the oxidative stress status and exerted the antidepressant-like effects.


Assuntos
Óleos Voláteis , Schisandra , Ratos , Animais , Camundongos , Schisandra/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Peróxido de Hidrogênio/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Estresse Oxidativo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Encéfalo/metabolismo , Superóxido Dismutase/metabolismo
7.
Science ; 376(6595): 869-874, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35587977

RESUMO

We report the reprogramming of nonheme iron enzymes to catalyze an abiological C(sp3)‒H azidation reaction through iron-catalyzed radical relay. This biocatalytic transformation uses amidyl radicals as hydrogen atom abstractors and Fe(III)‒N3 intermediates as radical trapping agents. We established a high-throughput screening platform based on click chemistry for rapid evolution of the catalytic performance of identified enzymes. The final optimized variants deliver a range of azidation products with up to 10,600 total turnovers and 93% enantiomeric excess. Given the prevalence of radical relay reactions in organic synthesis and the diversity of nonheme iron enzymes, we envision that this discovery will stimulate future development of metalloenzyme catalysts for synthetically useful transformations unexplored by natural evolution.


Assuntos
Evolução Molecular Direcionada , Enzimas , Ferroproteínas não Heme , Biocatálise , Carbono/química , Enzimas/química , Hidrogênio/química , Ferroproteínas não Heme/química
8.
J Org Chem ; 84(21): 13755-13763, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31599588

RESUMO

The mechanism and origins of stereoselectivity of chiral iron porphyrin-catalyzed asymmetric hydroxylation of ethylbenzene were explored with density functional theory. The hydrogen atom abstraction is the rate- and stereoselectivity-determining step. In good agreement with experimental results, the formation of the (R)-1-phenylethanol product is found to be the most favorable pathway. The transition state of hydrogen atom abstraction which leads to the (S)-1-phenylethanol product is unfavorable by 1.7 kcal/mol compared to the corresponding transition state which leads to the (R)-1-phenylethanol product. Enantioselectivity arises from an attractive π-π stacking interaction between the phenyl group of ethylbenzene substrate and the naphthyl group of the porphyrin ligand.

9.
J Am Chem Soc ; 138(5): 1660-7, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26804318

RESUMO

The cycloadditions of benzene and ten different azabenzenes (pyridine, three diazines, three triazines, and three tetrazines) with the ethylene dienophile have been explored with density functional theory (M06-2X) and analyzed with the distortion/interaction model. Activation barriers correlate closely with both distortion energies and interaction energies over an activation energy range of 45 kcal/mol. The replacement of CH with N increases Diels-Alder reactivity due not only to the more favorable orbital interaction, but also to a decrease in distortion energy. The rates of reactions are greatly influenced by the nature of the bonds being formed: two C-C bonds > one C-C bond, and one C-N bond > two C-N bonds. The activation energy of Diels-Alder reactions correlates very well with reaction energies and with the NICS(0) values of the aromatic dienes. The distortion energy of the Diels-Alder reaction transition states mostly arises from the diene out-of-plane distortion energy.

10.
Angew Chem Int Ed Engl ; 55(8): 2810-4, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26804615

RESUMO

We report the first catalytic method for activating the acyl C-O bonds of methyl esters through an oxidative-addition process. The oxidative-addition adducts, formed using nickel catalysis, undergo in situ trapping to provide anilide products. DFT calculations are used to support the proposed reaction mechanism, to understand why decarbonylation does not occur competitively, and to elucidate the beneficial role of the substrate structure and the Al(OtBu)3 additive on the kinetics and thermodynamics of the reaction.


Assuntos
Carbono/química , Ésteres/química , Níquel/química , Oxigênio/química , Catálise , Modelos Moleculares
11.
Nature ; 524(7563): 79-83, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26200342

RESUMO

Amides are common functional groups that have been studied for more than a century. They are the key building blocks of proteins and are present in a broad range of other natural and synthetic compounds. Amides are known to be poor electrophiles, which is typically attributed to the resonance stability of the amide bond. Although amides can readily be cleaved by enzymes such as proteases, it is difficult to selectively break the carbon-nitrogen bond of an amide using synthetic chemistry. Here we demonstrate that amide carbon-nitrogen bonds can be activated and cleaved using nickel catalysts. We use this methodology to convert amides to esters, which is a challenging and underdeveloped transformation. The reaction methodology proceeds under exceptionally mild reaction conditions, and avoids the use of a large excess of an alcohol nucleophile. Density functional theory calculations provide insight into the thermodynamics and catalytic cycle of the amide-to-ester transformation. Our results provide a way to harness amide functional groups as synthetic building blocks and are expected to lead to the further use of amides in the construction of carbon-heteroatom or carbon-carbon bonds using non-precious-metal catalysis.


Assuntos
Amidas/química , Carbono/química , Técnicas de Química Sintética/métodos , Ésteres/síntese química , Níquel/química , Nitrogênio/química , Álcoois , Benzamidas/química , Benzoatos/síntese química , Catálise , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA